Nearby supernova remnants and the cosmic ray spectral hardening at high energies
نویسندگان
چکیده
Recent measurements of cosmic ray spectra of several individual nuclear species by the CREAM, TRACER and ATIC experiments indicate a change in the spectral index of the power laws at TeV energies. Possible explanations among others include non-linear diffusive shock acceleration of cosmic rays, different cosmic ray propagation properties at higher and lower energies in the Galaxy and the presence of nearby sources. In this paper, we show that if supernova remnants are the main sources of cosmic rays in our Galaxy, the effect of the nearby remnants can be responsible for the observed spectral changes. Using a rigidity-dependent escape of cosmic rays from the supernova remnants, we explain the apparent observed property that the hardening of the helium spectrum occurs at relatively lower energies as compared to the protons and also that the spectral hardening does not persist beyond ∼(20–30) TeV energies.
منابع مشابه
Anomaly in the cosmic-ray energy spectrum at GeV–TeV energies
Recent measurements of cosmic rays by various experiments have found that the energy spectrum of cosmic rays is harder in the TeV region than at GeV energies. The origin of the spectral hardening is not clearly understood. In this paper, we discuss the possibility that the spectral hardening might be due to the effect of re-acceleration of cosmic rays by weak shocks associated with old supernov...
متن کاملRevisiting the hardening of the cosmic-ray energy spectrum at TeV energies
Measurements of cosmic rays by experiments such as ATIC, CREAM, and PAMELA indicate a hardening of the cosmic-ray energy spectrum at TeV energies. In our recent work (Thoudam & Hörandel 2012a), we showed that the hardening can be due to the effect of nearby supernova remnants. We showed it for the case of proton and helium. In this paper, we present an improved and detailed version of our previ...
متن کاملBroad-band nonthermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants
Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here the situation in which a molecular cloud is located in the proximity of a superno...
متن کاملEvidence of 10–100 TeV Electrons in Supernova Remnants
Analyses of the X-ray data of the five young shell-type supernova remnants Cas A, Kepler, Tycho, SN 1006, and RCW 86 suggest that some of the X-ray emission of these sources is non-thermal. This non-thermal emission is qualitatively consistent with models of the broad-band (radio-to-X-ray) synchrotron spectra of remnants and does not seem to be consistent with other non-thermal X-ray emission p...
متن کاملCosmic ray spectral hardening due to dispersion in the source injection spectra
Recent cosmic ray (CR) experiments discovered that the CR spectra experience a remarkable hardening for rigidity above several hundred GV. We propose that this is caused by the superposition of the CR energy spectra of many sources that have a dispersion in the injection spectral indices. Adopting similar parameters as those of supernova remnants derived from the Fermi -ray observations, we can...
متن کامل